Orthogonal polynomials and some q-beta integrals of Ramanujan
نویسندگان
چکیده
منابع مشابه
Q-Hermite Polynomials and Classical Orthogonal Polynomials
We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...
متن کاملOn some properties of q-Hahn multiple orthogonal polynomials
This contribution deals with multiple orthogonal polynomials of type II with respect to q-discrete measures (q-Hahn measures). In addition, we show that this family of multiple orthogonal polynomials has a lowering operator, and raising operators as well as a Rodrigues type formula. The combination of lowering and raising operators leads to a third order q-difference equation when two orthogona...
متن کاملq-Coherent pairs and q-orthogonal polynomials
In this paper we introduce the concept of q coherent pair of linear functionals. We prove that if ðu0; u1Þ is a q coherent pair of linear functionals, then at least one of them has to be a q classical linear functional. Moreover, we present the classification of all q coherent pairs of positive definite linear functionals when u0 or u1 is either the little q Jacobi linear functional or the litt...
متن کاملSome Identities on the Generalized q-Bernoulli Numbers and Polynomials Associated with q-Volkenborn Integrals
Let p be a fixed prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of Qp. Let N be the set of natural numbers and Z {0} ∪ N. Let νp be the normalized exponential valuation of Cp with |p|p p−νp p p−1. When one talks of q-exte...
متن کاملdecompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials
For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1985
ISSN: 0022-247X
DOI: 10.1016/0022-247x(85)90261-6